
Ontology	building	with	Protégé	

	
	
PART	I	:	Exploration	

1. Installation	of	Protégé	version	5.5

Download Protégé from http://protegeproject.github.io/protege/installation/

2. Launch	Protégé	and	import	the	Pizza	ontology		

1. Execute the bin file: >sh ./install_protege.bin
2. Import the Pizza ontology (Direct Imports then choose « import an ontology contained in

a document located on the web ») (cf. Figure 1)
3. Analyse the class hierarchy, the different options that appear on the boxes on the right of

the main window. Try to understand the meaning of the different specifications.
4. Explore the tabs Properties and Individual and observe how they are used
5. Create some instances of Pizza, PizzaBase and PizzaTopping classes
6. Extend the example by creating a new type of pizza that does not exist. For this purpose,

o Create a new class representing the new pizza. Express how this new pizza is
related to other pizzas using disjoint constraints

o Create a new kind of topping for your pizza
o Specify for example that your pizza is of French origin.

Figure 1 : The Pizza Ontology Import

	

PART	II	:	Family	ontology	design	and	development	

The	purpose	of	this	lab	is	to	give	you	with	the	basics	of	ontology	modelling	using	Protégé	tool.		The	main	
goal	is	to	design	the	‘family’	ontology,	create	individuals	and	infer	new	relations.		

	

1-	Classes	and	subclasses	
	 The	 first	 step	 is	 to	design	 classes	 and	 subclasses	of	 family	ontology	 according	 to	 the	 following	
figure	(Fig.2):	

	

Figure	2	:	Family	ontology	

	

Figure	3	:	Sub-classes		

Note:	It	is	possible	to	create	a	hierarchy	of	classes	and	subclasses	(with	addSubClasses)	from	a	text	area	
using	indentations	(see	Figure	3),	or	by	adding	classes	one	by	one	with	the	+	button	at	the	top	left	of	the	
owl:Thing	class.	Then,	to	express	multiple	inheritance,	it	is	sufficient	to	mention	that	a	class	is	a	subclass	
of	several	classes	(see	Figure	5)	

	

Figure	4	:	Family	classes	

Figure	5	:	Multiple	Heritage		

	

3. Class	properties		

a. Data	Properties	(cf.	Figure	6)	
1. A	person	has	a	name,	an	age	and	a	nationality.	

a. Create	a	datatype	property	name	with	domain	Person	and	range	xsd:String	
b. Create	a	datatype	property	age	with	domain	Person	and	range	xsd:int	
c. 	Create	a	datatype	property	nationality	with	domain	Person	and	range	xsd:String	

Figure	6	:	Data	Properties	

b. Object	Properties	(cf.	Figure	7)	
	

2. Two	people	can	get	married	

Create	an	object	property	isMarriedWith	with	Person	as	domain	and	range		
3. A	person	is	parent	of	another	person	

Create	the	object	property	isParentOf	with	Person	as	domain	and	range		

4. A	Male	is	father	of	person	

Create	the	object	property	isFatherOf	which	is	sub	property	of	isParentOf	with	domain	Male	and	
range	Person	

5. A	Female	is	mother	of	person		
Create	the	object	property	isMotherOf	which	is	sub	property	of	isParentOf	with	domain	Female	
and	range	Person		

6. A	person	belongs	to	another	person’s	siblings		
Create	the	object	property	isSiblingOf	with	domain	Person	and	range	Person		

7. A	man	is	the	brother	of	a	person		

Create	 the	object	 property	 isBrotherOf	which	 is	 sub	property	 of	 isSiblingOf	with	 domain	Male	
and	range	Person		

8. A	Female	is	the	sister	of	a	person		
Create	 the	object	property	 isSisterOf	which	 is	 sub	property	of	 isSiblingOf	with	domain	Female	
and	range	Person		

9. A	person	is	a	child	of	another	person		
Create	the	object	property	isChildOf	with	domain	Person	and	range	Person		

10. A	Male	is	the	son	of	a	person		
Create	 the	 object	 property	 isSonOf	 which	 is	 sub	 property	 of	 isChildOf	 with	 domain	Male	 and	
range	Person		

11. A	woman	is	the	daughter	of	a	person		

Create	the	object	property	isDaughterOf	which	is	sub	property	of	isChildOf		with	domain	Female	
and	range	Person	

	

Figure	7	:	Object	Properties	

3.	Class	and	properties	restrictions	
NECESSARY	AND	SUFFICIENT	CONDITION		(Equivalent	To):	

• An	uncle	has	the	restriction	:	is	brother	of	one	parent		
• A	grandfather	has	the	restriction	:	is	father	of	a	parent		
• A	grandmother	has	the	restriction	:	is	mother	of	a	parent		
• A	father	has	the	restriction	:	isFatherOf	property	has	at	least	one	instance		
• A	mother	has	the	restriction	:	isMotherOf	property	has	at	least	one	instance		
• A	son	has	the	restriction	:		isSonOf	property	has	at	least	one	instance	

• A	daughter	has	the	restriction	:		isDaughterOf	property	has	at	least	one	instance	
• A	brother	has	the	restriction	:		isBrotherOf	property	has	at	least	one	instance	

• A	sister	has	the	restriction	:		isSisterOf	property	has	at	least	one	instance	(cf.	Figure	8)	
	

Figure	8	:	Restriction	on	Sœur	class	

DISJOINTS	CLASSES	:	

• Male	and	Female	are	disjoints	
• Father	and	Mother	are	disjoints	
• Son	and	Daughter	are	disjoints	
• GandFather	and	GrandMother	are	disjoints	

4.	Assign	types	to	properties	
1. iMarriedWith	and	isSiblingOf	are	symmetric	properties	
2. isSiblingOf	property	is	transitive	
3. isChildOf	property	is	the	inverse	property	of	isParentOf		

4. name,	age	and	nationality	are	functional	properties	

5.	Individuals	
1. create	individuals	to	Male	class	:		

a. Peter,	70,	isMarriedWith	Marie.	He	is	French	
b. Thomas,	40,	isSonOf	Peter.	He	is	French	
c. Paul,	38	isSonOf	Peter	

d. John,	45,	is	italian	
e. Pedro,	10,	isSonOf	John	
f. Tom,	10,	isSonOf	Thomas	and	Alex	
g. Michael,	5,	isSonOf	Thomas	and	Alex	

2. create	individuals	to	Female	class	:		
a. Marie,	69,	french	
b. Sylvie,	30,	isDaughterOf	Marie	and	Peter	
c. Chloé,	18,	isDaughterOf	Marie	and	Peter	
d. Sylvie	isMarriedWith	John	
e. Claude,	5,	isDaughterOf	Sylvie,	french	

f. Alex,	25,	isMarriedWith	Thomas	

6.	Ontology	checking	using	an	inference	engine	and	basic	reasoning	(OWL)	
1. Configure	the	inference	engine,		menu	:	Reasoner/Pellet	or	Reasoner/HermiT	
2. Check	the	consistency	by	running	the	reasoner	:	start	reasoner	
3. By	going	through	the	different	instances,	you	can	see	the	inferences	made	(yellow	background).	

What	do	you	observe?	
4. 	
5. Instances	of	the	Male	and	Female	classes	are	automatically	associated	to	the	Person	class.	In	

version	3	of	Protégé	these	are	visible	directly	from	the	Person	class	but	since	version	4	this	is	no	
longer	the	case.	One	way	to	view	them	is	to	run	a	DL	Query	by	typing	the	class	name.		

6. No	instances	are	generated	in	the	Brother,	Sister	and	Uncle	classes.	Why	?	How	can	we	infer,	for	
example,	the	relationships	isBrotherOf	or	isSisterOf	from	isChildOf?		

	
The	next	lab	(Jena)	will	allow	you	to	express	these	kinds	of	restrictions	using	a	rule	language.	Indeed,	
inference	rules	will	solve	this	problem	
	

SPARQL		
1. In	the	SPARQL	Queries	window,	test	some	queries	

a. Provide	the	instances	of	Male	class?	

b. How	old	is	John?	
c. Provide	Peter's	children	names?	

