

Amel Bouzeghoub CSC4538

- is based on research carried out in the field of description logic
- used to describe ontologies, i.e. it enables terminologies to be defined to describe concrete domains
- is an important step forward in the representation and organisation of knowledge available on the Web
- is designed as an extension of the Resource Description Framework (RDF) and RDF Schema (RDFS).

RDF and RDFs alone are too limited :

- Cannot specify the nature of the relationships between resources (reflexivity, etc.)
- No capacity for reasoning

Introduction

- Very limited logic
- The need for OWL :
 - Derives from RDF + RDFS
 - Logical connectors between classes (union, intersection, etc.)
 - Cardinality on properties
 - Characterization of properties (transitivity, inverse, etc.)

Main advantages

- Brings better integration, evolution, sharing and easier inference of ontologies
- Adds the concepts of equivalent classes, equivalent properties, equality of two resources, their differences, the opposite, symmetry and cardinality
- Thanks to its formal semantics based on a widely studied logical foundation, allows to define more complex associations of resources as well as the properties of their respective classes
- Is suitable for the Semantic Web, as it offers a strictly defined syntax, and depending on the level can allow automated reasoning on knowledge inferences and conclusions

OWL sub-languages

OWL has three expressive languages for use by different communities of developers and users.

Structure of an owl ontology

Based on RDFS

An OWL ontology is an OWL document (file extension .rdf or .owl) with:

- Namespace declarations (owl, rdf, and others)
- The header (<owl:Ontology>) to describe the content of the ontology
- The definition of classes
- The definition of properties
- Assertion of facts

Extensibility of existing ontologies :

<owl:import> to use other OWL ontolgies and extend them :

Definition of OWL classes

A class can be declared in several ways:

- By naming the class or,
- By enumeration of its individuals
- By restricting the properties of its individuals
- By intersection (AND), union (OR) or complement (NOT) of another class

==> Anonymous Classes: The members of an anonymous class are the set of Individuals that satisfy its logical definition

- There is an inheritance mechanism (<owl:subClassOf>)
- The superclass owl: Thing is the mother of all the other classes
- owl:Nothing is subclass of all classes
- In OWL Full, a class can be an instance of another class (a "metaclass").
- The set of instances of a class is called "the extension".

Ξ	Existential, someValuesFrom	"Some", "At least one"
\forall	Universal, allValuesFrom	"Only"
Э	hasValue	"equals x"
_	Cardinality	"Exactly n"
\leq	Max Cardinality	"At most n"
\geq	Min Cardinality	"At least n"

Property Characteristics

Domain and range can be set

OWL offers a mechanism for property inheritance:

owl:ObjectProperty rdf:ID="aPourFrere"> <rdfs:subPropertyOf rdf:resource="#estDeLaFamilleDe" /> <rdfs:range rdf:resource="#Humain" /> <rdfs:domain rdf:resource="#Humain" /> </owl:ObjectProperty>

Properties can be characterized:

- Inverse
- Transitivité
- Symétrie
- Fonctionnelle
- fonctionnelle Inverse

<<owl:ObjectProperty rdf:ID="aPourFrere">

<rdf:type rdf:resource="&owl;SymmetricProperty" />

<rdfs:range rdf:resource="#Humain" /> <rdfs:domain rdf:resource="#Humain" /> </owl:ObjectProperty>

• P1(X,Y) iff P2(Y,X)

- X mange Y iff Y estMangéPar X
- X aPourParent Y iff Y aPourFils X

• If P(X,Y) and P(Y,Z) then P(X,Z)

• X ancetreDe Y, Y ancetreDe Z, then X ancetreDe Z

• P(X,Y) iff P(Y,X)

• X estFrère Y iff Y estFrère X

Functional Property

Unicity

Only one instance can be linked
 If P(X,Y) and P(X,Z) then Y=Z

 If X aPourMereBiologique Y and X aPourMereBiologique Z then Y=Z

• P(Y,X) and P(Z,X) then Y=Z

 Y aPourNumPasseport X and Z aPourNumPasseport X then Y=Z

OWL Class Constructors

Constructor	DL Syntax	Example	FOL Syntax
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Human ⊓ Male	$C_1(x) \wedge \ldots \wedge C_n(x)$
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Doctor ⊔ Lawyer	$C_1(x) \lor \ldots \lor C_n(x)$
complementOf	$\neg C$	¬Male	$\neg C(x)$
oneOf	$\{x_1\}\sqcup\ldots\sqcup\{x_n\}$	{john} ⊔ {mary}	$x = x_1 \lor \ldots \lor x = x_n$
allValuesFrom	$\forall P.C$	∀hasChild.Doctor	$\forall y. P(x, y) ightarrow C(y)$
someValuesFrom	$\exists P.C$	∃hasChild.Lawyer	$\exists y. P(x,y) \land C(y)$
maxCardinality	$\leqslant nP$	≤1hasChild	$\exists^{\leqslant n}y.P(x,y)$
minCardinality	$\geqslant nP$	≥2hasChild	$\exists^{\geqslant n}y.P(x,y)$

Axiom	DL Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human \sqsubseteq Animal \sqcap Biped
equivalentClass	$C_1 \equiv C_2$	$Man \equiv Human \sqcap Male$
disjointWith	$C_1 \sqsubseteq \neg C_2$	Male $\sqsubseteq \neg$ Female
sameIndividualAs	$\{x_1\} \equiv \{x_2\}$	${President_Bush} \equiv {G_W_Bush}$
differentFrom	$\{x_1\} \sqsubseteq \neg \{x_2\}$	${\rm john} \sqsubseteq \neg {\rm peter}$
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter \sqsubseteq hasChild
equivalentProperty	$P_1 \equiv P_2$	$cost \equiv price$
inverseOf	$P_1 \equiv P_2^-$	hasChild \equiv hasParent ⁻
transitiveProperty	$P^+ \sqsubseteq P$	ancestor $+ \sqsubseteq$ ancestor
functionalProperty	$\top \sqsubseteq \leqslant 1P$	$ op \sqsubseteq \leqslant 1$ hasMother
inverseFunctionalProperty	$\top \sqsubseteq \leqslant 1P^{-}$	$\top \sqsubseteq \leqslant 1$ hasSSN $^-$

