
Lab:	SPARQL	query	language	and	Jena	rule	
language

The	aim	of	this	lab	is	to	manipulate	both	SPARQL	query	language	and	Jena	rules	
language.	In	the	first	part	you	will	test	the	queries	and	the	rules	by	checking	the	effect	of	
the	actions	of	the	latter.		
	
In	the	next	lab,	you	will	be	able	to	program	an	application	with	Jena.	

	

SPARQL		

-	Download	the	file	tpjena_fat.rar	and	run	the	application.	A	mini	tutorial	describing	the	
application	is	available	on	moodle.	

1.	Checking	the	constraints	defined	in	your	family	ontology

Write	the	following	queries	by	ticking	«	With	OWL	inference	».		

Verify the instances of the classes (they are automatically injected thanks to the constraints defined in OWL).

1. The	list	(name	and	age)	of	Peter's	children	
2. What	are	the	instances	of	Person?	
3. provide	a	list	of	women	who	are	over	30	years	old?		
4. Display	the	list	of	persons	(limited	to	3)	whose	father	is	older	than	40		
5. Display	the	list	(name	and	age)	of	all	individuals	of	French	nationality	and	for	

each	individual,	we	want	the	name	of	his	spouse	if	he	is	married	
6. Display	the	list	of	all	the	persons	who	are	brother	of	a	person	
7. Display	the	list	of	all	persons	whose	spouse	is	older	
8. List	all	instances	of	the	class	Daughter,	for	each	instance	display	its	name	and	age	

if	they	exist	
9. What	are	the	instances	of	the	class	Parent	with	their	age	if	the	information	exists	

and	display	the	result	in	descending	order	of	age	

Some	basic	elements	of	the	syntax	of	SPARQL:		

PREFIX	ns:	<...#>	

SELECT	<variable>	WHERE{	

<triplet>	.	<triplet>	.	<fonction>.	

}	

Prefix	defines	the	space	names.	
each	variable	is	written	with	a?	(example:	?age).	

To	display	all	the	variables	used	in	the	result,	use	select	*.	
Examples	of	possible	functions: 	

-	FILTER	(?price	<100)	:	filter	products	with	a	price	less	than	100	euros.	

	-	OPTIONAL	{...}	:	sets	an	optional	predicate	

-	UNION	

For	a	detailed	tutorial	on	SPARQL:	see		

http://jena.sourceforge.net/ARQ/Tutorial/	

2.	Jena	:	Writing	inference	rules	to	generate	new	instances

Write	the	following	reasoning	rules	and	to	test	them,	write	the	associated	SPARQL	
query:		

1. If	a	person	A	is	son	of		B,	then	A	is	an	instance	of	Son.		
2. If	a	person	A	is	a	daugther	of	B,	then	A	is	an	instance	of	Daughter.		
3. If	a	person	A	is	son	of	B,	then	A	is	also	a	child	of	B	
4. If	a	person	A	is	daughter	of	B,	then	A	is	also	a	child	of	B	
5. If	a	person	A	is	a	child	of	B	then	A	is	an	instance	of	Child	
6. If	a	person	A	is	a	child	of	B	then	B	is	a	parent	of	A	
7. If	a	person	A	is	a	mother	of	B,	then	A	is	an	instance	of	Mother	
8. If	a	person	A	is	a	father	of	B,	then	A	is	an	instance	of	Father	
9. If	a	person	A	is	a	mother	of	B,	then	A	is	also	a	parent	of	B	
10. 	If	a	person	A	is	a	father	of	B,	then	A	is	also	a	parent	of	B	
11. If	a	person	A	is	a	parent	of	B,	then	A	is	an	instance	of	Parent	
12. Define	the	object	property	isUncleOf	as	a	brother	of	a	parent	
13. If	a	person	A	has	parents	who	have	nationality	X,	then	A	has	nationality	X		
14. A	person	A	who	is	older	than	60	is	aged	(instance	of	Old)	

	
	

General	structure	of	the	jena	rules:	
@prefix	ns:	<http://www.owl-ontologies.com/Ontology1291196007.owl#>.

	[rulename:	(<triplet>)	->	(<triplet>)]	

Some	usefull	functions:	le(?x,?y),	ge(?x,?y),	lessThan(?x,?y),	greaterThan(?x,?y)		

For	more	details:	http://jena.sourceforge.net/inference/#rules	

	

